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Abstract
We investigate two-particle phase-space distributions in classical mechanics
constructed to be the analogs of quantum-mechanical angular-momentum
eigenstates. We obtain the phase-space averages of specific observables related
to the projection of the particles’ angular momentum along axes with different
orientations, and show that the ensuing correlation function violates Bell’s
inequality. The key to the violation resides in choosing observables impeding
the realization of the joint measurements whose existence is required in the
derivation of the inequalities. This situation can have statistical (detection
related) or dynamical (interaction related) underpinnings, but non-locality does
not play any role.

PACS numbers: 03.65.Ud, 03.65.Ta, 45.20.Dc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bell’s theorem was originally introduced [1] to examine quantitatively the consequences of
postulating hidden variable distributions on the incompleteness of quantum mechanics put
forward by Einstein, Podolsky and Rosen [2] (EPR). The core of the theorem takes the form
of inequalities involving average values of two observables each related to one of the two
particles. Bell showed that these inequalities must be satisfied by any theory containing local
variables aiming to complete quantum mechanics in the EPR sense. The assumptions leading
to Bell’s theorem imply the existence of a joint probability distribution accounting for the
simultaneous existence of incompatible quantum observables [3, 4]. Local models forbidding
the existence of these joint distributions are therefore not bound by Bell’s theorem. Indeed local
models violating Bell-type inequalities have already been proposed [5–7], but these models
are mathematical and abstract. In this work, we show that the familiar statistical distributions
of classical mechanics may lead to a violation of the relevant Bell-type inequalities. Our
main ingredients will consist first in choosing specific classical phase-space ensembles for
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two particles (distributions constructed to be the classical analogs of the quantum-mechanical
angular momenta eigenstates), and then in choosing detectors impeding the existence of the
joint probability distribution. We will consider two types of settings involving angular-
momentum measurements, each setting being closely related to a well-known quantum-
mechanical context. The first setting will consist of a classical version of the detection loop
hole [8]: the relevant Bell inequalities will be seen to be violated when the sampling is done
on a sub-ensemble, defined by the type of detected events, leading to averages computed on a
partial region of phase space over which the joint probability distribution cannot be defined.
Hence the violation has a statistical underpinning—we will show there is no violation if the
averages are taken on the entire phase space. The second setting will reveal a genuine violation
of the Bell inequalities due to dynamical reasons: by including in the detection process a local
probabilistic interaction between the measured particle and the detector inducing a random
perturbation with a constraint that blurs the particles’ individual phase-space positions, the
derivation of Bell’s theorem is effectively blocked, as only correlations between ensembles
corresponding to a fixed setting of the detectors can be made. This example can be seen as a
classical version of the quantum measurement of non-commuting observables.

2. Classical ensembles

We first introduce the classical analogs of the quantum-mechanical angular-momentum
eigenstates to be employed below. The classical distributions of particles can be considered
either in phase space or in configuration space; equivalently, one can also consider the
distribution of the angular momenta on the angular-momentum sphere. Let us first take a
single classical particle and assume that the modulus J of its angular momentum is fixed.
The value of J then depends on the position of the particle in the phase space defined by
� = {θ, φ, pθ , pφ}, where θ and φ refer to the polar and azimuthal angles in spherical
coordinates and pθ and pφ are the conjugate canonical momenta. Let ρz(�) be the distribution
in phase space given by

ρz0(θ, φ, pθ , pφ) = Nδ(J
z
(�) − Jz0)δ

(
J 2(�) − J 2

0

)
. (1)

ρz0 defines a distribution in which every particle has an angular momentum with the same
magnitude, namely J0, and the same projection on the z axis Jz0 . Hence ρz0 can be considered
as a classical analog of the quantum-mechanical density matrix |jm〉〈jm| since just like a
quantum measurement of the magnitude j and of the z axis projection m of the angular
momentum in such a state will invariably yield the eigenvalues of the operators Ĵ 2 and Ĵ z, the
classical measurement of these quantities when the phase-space distribution is known to be
ρz will give J 2

0 and Jz0 (see Appendix A). Equation (1) can be integrated over the conjugate
momenta to yield the configuration space distribution

ρ(θ, φ) = N
[

sin(θ)

√
J 2

0 − J 2
z0

/
sin2(θ)

]−1
, (2)

where we have used the defining relations J
z
(�) = pφ and J 2(�) = p2

θ + p2
φ

/
sin2 θ . Further

integrating over θ and φ and requiring the phase-space integration of ρ to be unity allows one
to set the normalization constant N = J0/2π2.

There is of course nothing special about the z axis and we can define a distribution
by fixing the projection Ja of the angular momentum on an arbitrary axis a to be constant
(in this paper we will take all the axes to lie in the zy plane). Computing the distribution
ρa0 = δ(Ja − Ja0)δ

(
J − J 2

0

)
is tantamount to rotating the coordinates towards the a axis in

equation (2). Figure 1 shows examples of configuration space particle distributions and
gives for one plot the corresponding quantum-mechanical angular-momentum eigenstate
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Figure 1. Normalized angular distribution for a single particle in configuration space.
(a) Quantum distribution (spherical harmonic |YJM(θ, φ)|2). (b) Classical distribution ρz0 (θ, φ) of
equation (2). (c) Classical distribution ρa0 corresponding to a fixed value of Ja (here θa = π/4).
The angular momentum and the projection on the z [(a)–(b)] or a [(c)] axis is the same for the
three plots (J/η = 40, with η = h̄, and M/J = 5/8).

(the similarity is not accidental, as equation (2) is essentially the amplitude of the spherical
harmonic in the semiclassical regime, see appendix A). We can also determine the average
projection Ja on the a axis for a distribution of the type (2) corresponding to a well-defined
value of Jz:

〈Ja〉Jz0
=

∫
pφ cos θaδ(Jz

(�) − Jz0)d� = Jz0 cos θa, (3)

where θa is the angle (ẑ, a) and the projection of the component of Ja on the y axis vanishes
given the axial symmetry of the distribution.

The original derivation of the inequalities by Bell [1] involved the measurement of the
angular momentum of two spin-1/2 particles along different axes. Here we will consider the
fragmentation of an initial particle with a total angular momentum JT = 0 into two particles
carrying angular momenta J1 and J2 (we will assume to be dealing with orbital angular
momenta). Conservation of the total angular momentum imposes J1 = −J2 and J1 = J2 ≡ J.

Quantum mechanically, this situation would correspond to the system being in the singlet state
arising from the composition of the angular momenta (jT = 0,m1 = −m2). Classically the
system is represented by the 2-particle phase-space distribution

ρ(�1,�2) = Nδ(J1 + J2), (4)

where N is again a normalization constant. On the angular-momentum sphere the
distribution (4) corresponds to J1 and J2 being uniformly distributed on the sphere but pointing
in opposite directions. This distribution will now be employed for determining averages of
observables related to the angular momenta of the two particles.

3. Statistical violation of the Bell inequalities

Let us assume two types of detectors yielding outcomes related to the angular momenta of the
particles. The first type gives a ‘sharp’ (S) measurement of J1a only if J1a is an integer multiple
of some elementary gauge η, and gives 0 elsewhere. This detection can be represented by the
phase-space quantity

Sa(�1) = J1a(�1) if �1 ∈ �1k, Sa(�1) = 0 elsewhere, (5)

where �1k are the parts of phase space where J1a = kη compatible with a detection (see
figure 2(a)). The second detector gives a ‘direct’ (D) measurement of J2b (the projection of
J2 on an axis b). The corresponding phase-space function is

Db(�2) = J2 · b. (6)

3
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Figure 2. Setups for the first (a) and second (b) examples investigated in this work. In (a) an
S detector is placed along the a axis and a D detector along b. The angular momenta, originally
distributed on the sphere, are constrained to move on the rings (red dotted) corresponding to fixed
values of the projection on a. (b) shows the (ẑ, y) plane of the angular-momentum sphere for
the L = 1 case (hence J = 3/2); the three zones correspond to the projections of the spherical
zones ρ−1

a , ρ0
a and ρ+1

a . If the distribution corresponds to one of these ensembles, measuring Ja

will yield respectively the outcomes Ja = −1, 0, 1 with unit probability. If Jb is measured and
J ∈ ρk

a any of the outcomes Jb = −1, 0, 1 can be obtained with probabilities depending on the
distribution ρk

a .

In classical mechanics there is no natural unit for quantities having the dimension of an action,
so J and η can be expressed in terms of arbitrary units, and any physical result will depend
only on the ratio J/η. We will assume for definiteness that η is chosen so that the extremal
values ±J can be reached. J/η must hence be either an integer or a half-integer, the extremal
values in dimensionless units being given by ±L ≡ ±J/η. For example if η = 2J , the
measurement can only yield the extremal values L = ±1/2 (η = J allows one to measure
±L = ±1 and 0, η = 2J/3 allows ±L = ±3/2 and ±(L − 1) = ±1/2 etc). Note that
the particle label 1 or 2 can be attached to the detectors: indeed, we will call ‘1’ the particle
detected by S and ‘2’ the particle detected by D.

The classical average E(a, b) = 〈SaDb〉 for joint measurements over the statistical
distribution ρ can be computed from

E(a, b) =
∫

Sa(�1)Db(�2)ρ(�1,�2) d�1 d�2 (7)

with equations (4), (5) and (6). Given the characteristics (5) of the S detection, equation (7)
is actually a discrete sum over the parts of phase-space �1k leading to the detection of kη;
this can be written by including a delta function under the integral. Equation (4) imposes
θ2 = π − θ1 and φ2 = π + φ1, and equation (7) becomes

E(a, b) = 1

2

k=L∑
k=−L

∫
[L cos θ1]δ(L cos θ1 − k)[−L cos θ1 cos(θb − θa)] sin θ1 dθ1, (8)

where we have chosen the z axis to coincide with a to take advantage of the axial symmetry
imposed by Sa (here the limiting procedure in the delta function is understated). The 1

2
prefactor is the only nontrivial normalization factor (coming from the integration over θ1). We
obtain the average as

E(a, b) = − 1
6 (L + 1)(2L + 1) cos(θb − θa), (9)

which as expected depends solely on the ratio J/η ≡ L.
The correlation function employed in Bell’s inequality can be obtained in the standard

(or CHSH) form [9, 10]. We choose four axes a, b,a′, b′ (we can assume that an S detector
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is placed along a and a′, and a D detector along b and b′) and determine the average values
for each of the four possible combinations involving an S and a D detector. The correlation
function C relating the average values obtained for different orientation of the detectors’ axes
is

C(a, b, a′, b′) = (|E(a, b) − E(a, b′)| + |E(a′, b) + E(a′, b′)|)(L)−2, (10)

where we have divided by L2 to obtain the CHSH function in the standard form characterized
by values bounded by ±1. Here the detected values obey the conditions |S/L| � 1 and
|D/L| � 1, so that the usual derivation of the Bell inequalities would lead to

C(a, b, a′, b′) � 2. (11)

By replacing equation (9) in equation (10), it can be seen that for L = 1
2 , 1 and 3

2 , there are
several choices of the axes that lead to C(a, b, a′, b′) > 2. The maximal value of the correlation
function corresponds to C

(
0, π

4 , π
2 , 3π

4

) = 4
√

2 and 2
√

2 for L = 1
2 and 1 respectively1.

The violation of the Bell inequality is due to the fact that we are only including in the
statistics the measurements for which both the S and the D detectors click. But when an
S-measurement is made along the two different orientations a and a′ that enter the correlation
function, different and mutually exclusive parts of phase space are selected, so that the different
events

{S1a,D2b}, {S1a′ ,D2b}, {S1a,D2b′ }, and {S1a′ ,D2b′ } (12)

are not supported by a common phase-space distribution. As a consequence the quantity∫
Sa(�1)Db(�2)Sa′(�1)Db′(�2)ρ(�1,�2) d�1 d�2 (13)

describing the average of simultaneous measurements along the four axes becomes undefined.
However, as we mentioned above, the existence of the joint probability distribution in the
integrand of equation (13), or equivalently [11], of a common distribution for the events (12)
is a necessary ingredient in the derivation of Bell’s theorem, thereby explaining the violation
of the inequalities. It is noteworthy that if one includes the entire phase space in the
average (7) instead of the parts of phase space corresponding to the double-click events,
then equation (13) becomes well defined. It can then be shown that E(a, b) and C(a, b, a′, b′)
should be multiplied by the fraction of phase-space yielding the double click measurements2:
as a result Bell’s inequality would not be violated. From the standpoint of classical mechanics,
the objection regarding the necessity of including the entire phase space makes sense, since
one can envisage in principle a particle analyzer able to detect the particles that have not been
included in the double-click statistics. The quantum analog of this problem is the well-known
detection loophole, pending on the experimental tests of Bell’s inequalities [8, 13].

4. Dynamically induced violation of the Bell inequalities

Our second setting goes further into the violation of Bell’s inequalities by postulating a model
involving a local probabilistic interaction during the measurement between the detector and

1 The reader familiar with the Bell inequalities for the quantum measurement of J1a and J2b will recognize the
similarity of equation (9) with the quantum expectation value; the only difference is that the quantum expectation
value is normalized respective to the number of possible outcomes (2L + 1) whereas here the normalization is relative
to classical phase space (namely the length 2L of the measurement axis).
2 Here this part of phase space is infinitesimal, since for the sake of mathematical simplicity we have modeled the S
detection by a delta function. If we replace the delta functions on the angular-momentum sphere by narrow rings and
spherical caps having a finite surface, the fraction of phase-space leading to double-click events becomes finite, and
the reasoning as well as the conclusions reached with the delta function modeling hold (although the computations
need to be made numerically) [12].
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the particle being measured obeying a specific constraint: we then obtain a violation of the
inequality for the entire ensemble of particles. Let us take two identical detectors T1 and T2 that
give as only output the integer or half-integer values k = L,L − 1, . . . − L of the projection
J1a and J2b of the angular momenta of the particles. We choose here L = J/η − 1/2, from
which it follows that the maximal readout L is smaller than J ; for notational simplicity we
put η = 1 (so J , rather than J/η takes integer or half integer values). We further assume that
there is an interaction between T1 and particle 1 (and between T2 and particle 2) affecting the
angular momentum of the particle in a specific way.

We impose the following constraints on this process (which only involves a single particle
and its measuring apparatus, hence we drop the indices labeling the particles).

(i) There are distributions ρk
a such that if J ∈ ρk

a

P
Ta

k′
(
J ∈ ρk

a

) = δkk′ . (14)

This means that if Ta is measured and we obtain k then we know that previous to the
measurement J ∈ ρk

a with unit probability.
(ii) Let 〈Jb〉ρk

a
be the phase-space average of Jb over the distribution ρk

a , where the directions
b and a are assumed to be different. If Tb is measured and J ∈ ρk

a , any outcome k′ can
be obtained with a non-vanishing probability P

Tb

k′
(
J ∈ ρk

a

)
. Our main assumption is that

averaging over Tb gives the phase-space average of Jb, i.e. the interaction vanishes on
average. This constraint takes the form

〈Tb〉ρk
a

=
L∑

k′=−L

k′P Tb

k′
(
J ∈ ρk

a

) = 〈Jb〉ρk
a
. (15)

Equation (15) also holds if b = a but then only P
Ta

k = 1 is non-vanishing hence

〈Ta〉ρk
a

= 〈Ja〉ρk
a

= k. (16)

We will not be interested here in putting forward specific models of the interaction
yielding such probabilities; it will suffice for our purpose that a set of numbers Pk verifying
equation (15) and obeying

∑
k Pk = 1 can be obtained. We need to specify however the

distributions obeying equation (14). It is convenient to specify ρk
a in terms of the distribution

of J on the angular-momentum sphere: it can then easily be seen that equation (16) is realized
if ρk

a is taken to be the ring centered on the a axis and bounded by k − 1/2 < Ja < k + 1/2
(see figure 2(b)). Then a measurement of Ta will yield the outcome k with unit probability:

Ta = k if k − 1/2 < Ja < k + 1/2. (17)

One can of course envisage a distribution ρ obtained by combining the elementary ensembles
ρk

a . In particular the uniform distribution on the sphere ρ� is the sum of the 2L + 1 spherical
rings ρk

a ,

ρ� =
∑

k

ρk
a

2L + 1
(18)

and therefore if Ta is measured the probability of finding a given value k is P = 1/(2L + 1).
Inversely the obtention of the given outcome k is correlated with J ∈ ρk

a previous to
the measurement. With ρk

a defined in this way (equation (17)), 〈Jb〉ρk
a

is computed
straightforwardly and equation (15) becomes

〈Tb〉ρk
a

= k cos(θb − θa), (19)

6



J. Phys. A: Math. Theor. 41 (2008) 085303 A Matzkin

we see again that for correlations involving averages, the knowledge of the individual
probabilities P

Tb

k is not necessary. Note however that for the particular case J = 1 (i.e.,
L = 1/2) the constraints (15)–(17) as well as the normalization of the probabilities impose
the values of the P

Tb

k irrespective of any precise physical process: indeed k can only take the
values ± − 1/2 from which it follows that

P
Tb± = 1

2 ± 〈Ja〉ρk
a

= 1
2 ± k cos(θb − θa). (20)

Let us now go back to the 2-particle problem, assuming the initial phase-space density
ρ given by equation (4). The expectation value E(a, b) = 〈T1aT2b〉 is computed from the
general formula

E(a, b) =
L∑

k,k′=−L

kk′P(T2b = k′ ∩ T1a = k), (21)

where k and k′ run on the possible outcomes. The probabilities of obtaining T1a = k and
T2b = k′ are obtained in the following way. Using

P(T2b = k′ ∩ T1a = k) = P(T1a = k)P (T2b = k′|T1a = k) (22)

we first determine P(T1a = k) by remarking that the initial distribution ρ corresponds to
J1 being uniformly distributed on the sphere. According to the results of the preceding
paragraph, with the sphere being cut into 2L + 1 equiprobable zones ρk

a (see equation (18)),
we have P(T1a = k) = 1/(2L + 1). We also know that an outcome T1a = k corresponds to
J1 ∈ ρk

a (equation (14)). From the conservation of the total angular momentum, we infer that
particle 2 must lie in the zone ρ−k

a defined by k − 1/2 < −J2a < k + 1/2 (equation (17));
indeed if T2a were to be measured we would be assured of finding T2a = −T1a = −k. Hence
the conditional probability appearing in equation (22) is given by

P(T2b = k′|T1a = k) = P
Tb

k′
(
J2 ∈ ρ−k

a

)
, (23)

where P
Tb

k′ was defined in equation (15). The sum over k′ in equation (21) thus verifies
equation (15) and having in mind equation (19), the expectation value becomes

E(a, b) =
L∑

k=−L

−k2

2L + 1
cos(θb − θa) = −L(L + 1)

3
cos(θb − θa). (24)

The correlation function is again given by equation (10), since the maximum value detected
by a T measurement is L, not J . The result given by equation (24) is familiar from
quantum mechanics—it violates Bell’s inequality for L = 1/2 with a maximal violation
for C

(
0, π

4 , π
2 , 3π

4

) = 2
√

2. As noted for the single-particle case, the derivation of E(a, b)

does not depend in any way on the individual values of the probabilities P
Tb

k′ but only on the
condition (15) regarding the particle-measurement interaction. Note that by Bayes’ theorem,
it is of course equivalent to computing P(T2b = k′ ∩ T1a = k) from P(T2b = k′)P (T1a =
k|T2b = k′), i.e. by assuming that T2b = k′ is known first.

The violation of the Bell inequalities is due to the conjunction of two ingredients. The
first, represented by the constraints (14)–(16), is relative to a single particle and its interaction
with the measurement apparatus. The second is the conservation of the angular momentum
on average. Interestingly the first ingredient is the one that contradicts the assumptions made
in the derivation of Bell’s theorem. The reason is that equations (14)–(16) are incompatible
with the introduction of elementary probability functions p

Tb

k (�) such that

P
Tb

k′
(
J ∈ ρk

a

) =
∫

p
Tb

k′ (�)ρk
a(�) d�, (25)

7
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indeed, such probability functions would need to depend on the ensemble, giving rise to
functions of the type p

Tb

k (�; ρk
a). This is shown for the case L = 1/2 in appendix B. With this

point in mind, one can expand equation (21) (with equations (22), (18) and (23)) as

E(a, b) =
∫ ∑

k

kp
Ta

k (�1; ρ�)ρ�(�1) d�1

∫
B(�2, k)ρ−k

a (�2) d�2 (26)

with

B(�2, k) ≡
∑
k′

k′pTb

k′
(
�2; ρ−k

a

)
. (27)

The dependence of B on k is the crucial property allowing to violate Bell’s inequality (whereas
the dependence of ρ(�2) on k in equation (26) by itself can be absorbed in the initial correlation
δ(J1 +J2) provided k = k(�1)). The dependence of B on k has nothing to do with non-locality
or action at a distance. It is a simple consequence of the logical inference characterizing
the conditional probability (22) given the characteristics of the single particle interaction
with the measuring apparatus, namely the fact that the model allows only specific types of
correlations: in the single particle problem one can only correlate a given outcome with a
specific distribution—this happens when the distribution is symmetric relative to the detector’s
axis (equation (14)); in the two particle problem the single particle property just mentioned
makes only possible the correlation of J2 as a function of J1 in terms of the ensembles to
which they belong, not in terms of their individual positions. This is consistent with the fact
that the knowledge of the individual position of J is meaningless to compute the observed
probabilities, as even the elementary probabilities must depend on the ensemble to which the
angular momentum belongs3.

Note finally that B would not depend on k (and the elementary probabilities on the
ensembles), equation (26) would turn into

EBT(a, b) =
∫

A(�1)B(�2)ρ(�1,�2) d�1 d�2, (28)

where

A(�1) ≡
∑

k

kp
Ta

k (�1) B(�2) ≡
∑
k′

k′pTb

k′ (�2), (29)

thereby yielding the familiar form taken by the expectation value in the derivation of Bell’s
theorem. In the deterministic case considered by Bell [10] the functions p

Ta

k and p
Tb

k′ are
either 0 or 1 depending on the individual position of J1 (respectively J2). This implies that
k = k(�1), i.e. a given outcome depends on the position of J1 on the angular-momentum
sphere, and ρ−k

a (�2) = ρ(�2|J1) does not depend on k or a but on J1 = −J2 (hence the
inclusion of the term δ(J1 + J2) in the definition of ρ(�1,�2)). Conversely one may assume
ρ(�2|k) = ρ(�2|�1) in equation (26) with pk

a(�1) and pk′
b (�2) being probability functions

different from 0 or 1; then A and B defined in equation (29) are not the observed outcomes
but their averages, and EBT(a, b) is the expectation corresponding to the stochastic case
considered by Bell. Bell’s stochastic case correlates the individual positions of J1 and J2 to
possible outcomes with definite probabilities. In the present model the random interaction
forbids to make the correspondence between a given position of the angular momenta and
a definite outcome; instead the correspondence is between a definite outcome and a given
ensemble describing the positions of the angular momenta compatible with the outcome (of

3 It would be of course extremely valuable to understand what kind of physical processes are compatible with this
type of behavior (for example, the value of the angular momentum in this case could represent some time average of
an underlying stochastic process, or a space average of a field-like quantity distributed all over the ensemble).
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course if the former correspondence is satisfied, so is the latter, but the converse is not true). In
the latter case, the structure of the expectation value (26) does not allow to define a term of the
type given by equation (13) whereby a single distribution can account for several simultaneous
joint measurements. It appears indeed that the ensemble dependence exhibited by the present
model is a necessary feature in order to produce non-commuting measurements [12]. In this
sense the present model can be seen as a classical analog of the quantum measurement of
two non-commuting observables (such as J1a and J1a′ ) applied to correlations between two
particles as originally considered by EPR [2].

5. Conclusion

The present results show that averages obtained with 2-particle classical distributions
constructed to be the analogs of quantum-mechanical eigenstates can violate Bell’s inequalities.
The violation does not involve non-locality but statistical or dynamical processes that impede
the existence of joint probability distributions or the correlation between individual values of
the variables as required by Bell’s theorem. Possible implications on the role of the Bell-CHSH
argument as a marker of quantum nonlocality, which has recently been criticized [14], will be
examined elsewhere [12].

Appendix A

The scheme we are employing to construct the classical distributions rests on the well-known
analogy between the classical Poisson brackets and the quantum commutation relations in the
density matrix formalism. Let Ĝ be an operator and |ψg〉 an eigenstate with eigenvalue g.

Then the pure-state density matrix ρ̂g ≡ |ψg〉〈ψg| verifies [ρ̂g, Ĝ] = 0 and Ĝρ̂g = gρ̂g . In
classical mechanics the Poisson bracket of two phase-space quantities u(q, p) and v(q, p) is
a canonical invariant defined by [15]

{u, v} = ∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
. (A.1)

Let ρ(q, p) be the phase-space distribution and G(q, p) be a function such that {ρ,G} = 0.

This means that ρ is invariant relative to the canonical tranformation generated by G, i.e.

{ρ,G}δQG = δρ = 0, (A.2)

where QG is canonically conjugate to G, which is a constant of the motion. Then every point
of the distribution ρ will be characterized by the constant value taken by G, denoted g. If
this is the only constraint imposed on the distribution, ρ(q, p) will take the form (up to a
normalization constant)

ρ(q, p) = δ(G(q, p) − g). (A.3)

In configuration space, the distribution ρ(q) is obtained by integrating over the values of the
momentum compatible with a given q,

ρ(q) =
∫

ρ(q, p) dp =
∫

δ(p − pi)
∂G
∂p

∣∣
pi

dp, (A.4)

where pi is the root (assumed to be unique, else a sum is in order) of the argument of the delta
function. Integrating yields

ρ(q) = ∂p

∂G

∣∣∣∣
pi

= ∂2S

∂q∂G

∣∣∣∣
pi

, (A.5)
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where S(q,G) is the classical action. The configuration space density is therefore the
amplitude of the quantum density matrix element 〈q| ρ̂g|q〉 in the semiclassical approximation.

Appendix B

We show that the detection model for a single particle given in section 4 is inconsistent with
probability functions defined by equation (25) in the L = 1/2 case (the one violating the Bell
inequalities). Take equation (25) with a = b and k, k′ = +1/2,

P Tb

+ (J ∈ ρ+
b ) =

∫
pTb

+ (�)ρ+
b (�) d� = 1. (B.1)

Particularizing the general formula (17) to the case L = 1/2, ρ+
b is the positive hemisphere of

the unit sphere (since J = 1) centered on the b axis. The result on the right-hand side follows
from equation (20). Equation (B.1) implies that p

Tb
+ (�) = 1 for J ∈ ρ+

b and consequently
p

Tb− (�) = 0. Conversely since P
Tb
+ (J ∈ ρ−

b ) = 0, we must have p
Tb
+ (�) = 0 and p

Tb− (�) = 1
when J ∈ ρ−

b . Now assume that the distribution is instead ρ+
a with a different from the b axis.

Then according to our model (equation (20)) we should have

P Tb

+ (J ∈ ρ+
a ) =

∫
pTb

+ (�)ρ+
a (�) d� = cos2 θb − θa

2
. (B.2)

Noting that ρ+
a , the positive hemisphere centered on a, is actually composed of two parts,

ρ+
a ∩ ρ+

b and ρ+
a ∩ ρ−

b we can write

P Tb

+ (J ∈ ρ+
a ) =

∫
ρ+

a ∩ρ+
b

pTb

+ (�)ρ+
a (�) d� +

∫
ρ+

a ∩ρ−
b

pTb

+ (�)ρ+
a (�) d�. (B.3)

But we have seen that p
Tb
+ = 1 for J ∈ ρ+

b and p
Tb
+ (�) = 0 for J ∈ ρ−

b , hence

P Tb

+ (J ∈ ρ+
a ) =

∫
ρ+

a ∩ρ+
b

ρ+
a (�) d� = 1 − θb − θa

π
, (B.4)

which contradicts equation (B.2). Hence probability functions obeying equation (25) do not
exist, and equation (25) should be replaced by

P
Tb

k′
(
J ∈ ρk

a

) =
∫

p
Tb

k′
(
�; ρk

a

)
ρk

a(�) d�, (B.5)

where the notation p
Tb

k′ (�; ρk
a) denotes the dependence of the elementary probabilities on the

distribution. Note also that equation (25) does hold if one drops the requirement that p
Tb

k′ (�)

should represent an elementary probability: for example the functions p
Tb
+ (�) = Jb + 1/2 or

p
Tb
+ (�) = 2JbH(Jb) fulfil equation (B.2) without depending on the distribution, though none

of these functions is contained in the interval [0, 1] and are thus not probability functions.
We stress that these features, which put strong constraints on the type of admissible physical
models that one could envisage, are relevant to a single particle and its interaction with the
measurement apparatus.
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